Completing Statements MCQs for Sub-Topics of Topic 8: Trigonometry
Introduction to Trigonometry and Basic Ratios (Right Triangle Trigonometry)
Question 1. In a right-angled triangle, the side opposite the right angle is always the____
(A) Opposite side
(B) Adjacent side
(C) Hypotenuse
(D) Base
Answer:
Question 2. In a right-angled triangle, the sum of the two acute angles is____
(A) $45^\circ$
(B) $90^\circ$
(C) $180^\circ$
(D) $360^\circ$
Answer:
Question 3. The ratio of the length of the side opposite an acute angle to the length of the hypotenuse in a right triangle defines the trigonometric ratio called____
(A) Cosine
(B) Sine
(C) Tangent
(D) Secant
Answer:
Question 4. For an acute angle $\theta$ in a right triangle, $\cos \theta$ is the ratio of the adjacent side to the____
(A) Opposite side
(B) Adjacent side
(C) Hypotenuse
(D) Perpendicular
Answer:
Question 5. If the length of the side opposite an acute angle in a right triangle is 'o' and the length of the adjacent side is 'a', then $\tan \theta$ is given by____
(A) $o/a$
(B) $a/o$
(C) $o/h$ (where h is hypotenuse)
(D) $a/h$ (where h is hypotenuse)
Answer:
Question 6. The reciprocal of $\sin \theta$ is defined as____
(A) $\cos \theta$
(B) $\sec \theta$
(C) $\text{cosec } \theta$
(D) $\cot \theta$
Answer:
Question 7. $\frac{1}{\cos \theta}$ is defined as the trigonometric ratio called____
(A) Sine
(B) Cosine
(C) Tangent
(D) Secant
Answer:
Question 8. The ratio of the length of the adjacent side to the length of the opposite side for an acute angle in a right triangle is the____
(A) Tangent
(B) Cotangent
(C) Secant
(D) Cosecant
Answer:
Question 9. For any angle $\theta$ where $\cos \theta \neq 0$, the expression $\frac{\sin \theta}{\cos \theta}$ is equal to____
(A) $\cot \theta$
(B) $\tan \theta$
(C) $\sec \theta$
(D) $\text{cosec } \theta$
Answer:
Question 10. In a right triangle with legs of lengths 'a' and 'b' and a hypotenuse of length 'c', the relationship $a^2 + b^2 = c^2$ is known as the____
(A) Law of Sines
(B) Law of Cosines
(C) Pythagorean Theorem
(D) Triangle Inequality
Answer:
Trigonometric Ratios of Special Angles and Complementary Angles
Question 1. The exact value of $\sin 30^\circ$ is____
(A) 0
(B) $\frac{1}{2}$
(C) $\frac{\sqrt{2}}{2}$
(D) $\frac{\sqrt{3}}{2}$
Answer:
Question 2. The value of $\tan 45^\circ$ is____
(A) 0
(B) $\frac{1}{\sqrt{3}}$
(C) 1
(D) $\sqrt{3}$
Answer:
Question 3. $\cos 60^\circ$ is equal to____
(A) $\sin 30^\circ$
(B) $\cos 30^\circ$
(C) $\sin 60^\circ$
(D) $\tan 30^\circ$
Answer:
Question 4. The sum $\sin 45^\circ + \cos 45^\circ$ is equal to____
(A) 1
(B) $\sqrt{2}$
(C) 2
(D) $\frac{1}{\sqrt{2}}$
Answer:
Question 5. For any angle $\theta$, $\cos (90^\circ - \theta)$ is equivalent to____
(A) $\sin \theta$
(B) $\cos \theta$
(C) $\tan \theta$
(D) $\cot \theta$
Answer:
Question 6. If A and B are acute angles such that $\sin A = \cos B$, then $A+B$ is equal to____
(A) $45^\circ$
(B) $60^\circ$
(C) $90^\circ$
(D) $180^\circ$
Answer:
Question 7. The exact value of $\tan 0^\circ$ is equal to____
(A) 0
(B) 1
(C) undefined
(D) $\sqrt{3}$
Answer:
Question 8. The value of $\cos 90^\circ$ is____
(A) 0
(B) 1
(C) -1
(D) undefined
Answer:
Question 9. The value of $\tan 90^\circ$ is____
(A) 0
(B) 1
(C) -1
(D) undefined
Answer:
Question 10. Using complementary angle properties, $\frac{\sin 50^\circ}{\cos 40^\circ}$ simplifies to____
(A) 0
(B) 1
(C) $\tan 50^\circ$
(D) $\cot 40^\circ$
Answer:
Fundamental Trigonometric Identities
Question 1. The identity $\sin^2 \theta + \cos^2 \theta = 1$ is a fundamental____
(A) Reciprocal identity
(B) Quotient identity
(C) Pythagorean identity
(D) Sum identity
Answer:
Question 2. For values of $\theta$ where $\tan \theta$ is defined, the expression $\sec^2 \theta - 1$ is equal to____
(A) $\sin^2 \theta$
(B) $\cos^2 \theta$
(C) $\tan^2 \theta$
(D) $\cot^2 \theta$
Answer:
Question 3. For values of A where $\cot A$ is defined, the expression $1 + \cot^2 A$ is equivalent to____
(A) $\sin^2 A$
(B) $\cos^2 A$
(C) $\sec^2 A$
(D) $\text{cosec}^2 A$
Answer:
Question 4. The quotient identity for $\cot \theta$ states that $\cot \theta =$____
(A) $\frac{\sin \theta}{\cos \theta}$
(B) $\frac{\cos \theta}{\sin \theta}$
(C) $\frac{1}{\tan \theta}$
(D) $\frac{1}{\sin \theta}$
Answer:
Question 5. The reciprocal identity $\text{cosec } \theta = \frac{1}{\sin \theta}$ is true for all $\theta$ where____
(A) $\sin \theta = 0$
(B) $\sin \theta \neq 0$
(C) $\cos \theta = 0$
(D) $\cos \theta \neq 0$
Answer:
Question 6. The expression $\sec^2 A (1 - \sin^2 A)$ simplifies to____
(A) $\tan^2 A$
(B) $\cot^2 A$
(C) 1
(D) $\sec^2 A$
Answer:
Question 7. The expression $\sin \theta \cdot \cot \theta$ simplifies to____
(A) $\sin \theta$
(B) $\cos \theta$
(C) $\tan \theta$
(D) $\sec \theta$
Answer:
Question 8. The expression $(\sin \theta + \cos \theta)^2 - 1$ simplifies to____
(A) 0
(B) 1
(C) $2 \sin \theta \cos \theta$
(D) $\sin^2 \theta - \cos^2 \theta$
Answer:
Question 9. For values of $\theta$ where $\sec \theta$ and $\tan \theta$ are defined, the expression $(\sec \theta - \tan \theta)(\sec \theta + \tan \theta)$ simplifies to____
(A) $\sec^2 \theta + \tan^2 \theta$
(B) 1
(C) 0
(D) $\sec^2 \theta - \tan^2 \theta$
Answer:
Question 10. The expression $\frac{\tan \theta}{\sec \theta}$ simplifies to____
(A) $\sin \theta$
(B) $\cos \theta$
(C) $\tan \theta$
(D) $\cot \theta$
Answer:
Angle Measurement: Degrees and Radians
Question 1. One degree is divided into 60 units called____
(A) Radians
(B) Seconds
(C) Minutes
(D) Grads
Answer:
Question 2. The degree measure of a straight angle is____
(A) $90^\circ$
(B) $180^\circ$
(C) $270^\circ$
(D) $360^\circ$
Answer:
Question 3. A radian is the angle subtended at the center of a circle by an arc equal in length to the____
(A) Diameter
(B) Radius
(C) Circumference
(D) Chord
Answer:
Question 4. To convert an angle measured in radians to degrees, you should multiply the radian measure by____
(A) $\pi/180$
(B) $180/\pi$
(C) $\pi/360$
(D) $360/\pi$
Answer:
Question 5. To convert an angle measured in degrees to radians, you should multiply the degree measure by____
(A) $\pi/180$
(B) $180/\pi$
(C) $\pi/360$
(D) $360/\pi$
Answer:
Question 6. $150^\circ$ is equivalent to how many radians?
(A) $\frac{5\pi}{6}$ radians
(B) $\frac{7\pi}{6}$ radians
(C) $\frac{2\pi}{3}$ radians
(D) $\frac{3\pi}{4}$ radians
Answer:
Question 7. $\frac{2\pi}{3}$ radians is equivalent to how many degrees?
(A) $120^\circ$
(B) $150^\circ$
(C) $210^\circ$
(D) $240^\circ$
Answer:
Question 8. The length of an arc $l$ in a circle with radius $r$ and central angle $\theta$ (in radians) is given by $l=$____
(A) $r + \theta$
(B) $r \theta$
(C) $r / \theta$
(D) $\theta / r$
Answer:
Question 9. The area of a sector of a circle with radius $r$ and central angle $\theta$ (in radians) is given by Area =____
(A) $r \theta^2$
(B) $\frac{1}{2} r \theta$
(C) $\frac{1}{2} r^2 \theta$
(D) $r^2 \theta$
Answer:
Question 10. A complete angle ($360^\circ$) is equivalent to____
(A) $\pi$ radians
(B) $2\pi$ radians
(C) $\pi/2$ radians
(D) $4\pi$ radians
Answer:
Trigonometric Functions of a Real Number (Unit Circle Approach)
Question 1. In the unit circle, for an angle $\theta$ in standard position whose terminal side intersects the circle at point $(x, y)$, $\cos \theta$ is the____
(A) x-coordinate
(B) y-coordinate
(C) ratio $y/x$
(D) distance from origin
Answer:
Question 2. In the unit circle, for an angle $\theta$ in standard position whose terminal side intersects the circle at point $(x, y)$, $\sin \theta$ is the____
(A) x-coordinate
(B) y-coordinate
(C) ratio $x/y$
(D) angle measure
Answer:
Question 3. The domain of the function $y = \sin x$ is____
(A) $[-1, 1]$
(B) $[0, 2\pi]$
(C) All real numbers ($\mathbb{R}$)
(D) Integers ($\mathbb{Z}$)
Answer:
Question 4. The range of the function $y = \cos x$ is____
(A) $[-1, 1]$
(B) $[0, 1]$
(C) $(-\infty, \infty)$
(D) $(-\infty, -1] \cup [1, \infty)$
Answer:
Question 5. In Quadrant I of the coordinate plane, all trigonometric functions are____
(A) Positive
(B) Negative
(C) Zero
(D) Undefined
Answer:
Question 6. In Quadrant II, the sine function is positive, and the cosine function is____
(A) Positive
(B) Negative
(C) Zero
(D) Positive or Negative depending on the angle
Answer:
Question 7. In Quadrant III, the tangent function is positive, and the sine function is____
(A) Positive
(B) Negative
(C) Zero
(D) Positive or Negative depending on the angle
Answer:
Question 8. In Quadrant IV, the cosine function is positive, and the sine function is____
(A) Positive
(B) Negative
(C) Zero
(D) Positive or Negative depending on the angle
Answer:
Question 9. The principal period of both $\sin x$ and $\cos x$ is____
(A) $\pi$
(B) $2\pi$
(C) $\pi/2$
(D) $4\pi$
Answer:
Question 10. The principal period of both $\tan x$ and $\cot x$ is____
(A) $\pi$
(B) $2\pi$
(C) $\pi/2$
(D) $4\pi$
Answer:
Graphs of Trigonometric Functions
Question 1. The graph of $y = \sin x$ passes through the point____
(A) $(0, 1)$
(B) $(1, 0)$
(C) $(0, 0)$
(D) $(\pi/2, 1/2)$
Answer:
Question 2. The graph of $y = \cos x$ passes through the point____
(A) $(0, 0)$
(B) $(0, 1)$
(C) $(1, 0)$
(D) $(\pi, 0)$
Answer:
Question 3. The maximum value of both $y = \sin x$ and $y = \cos x$ is____
(A) 0
(B) 1
(C) $\pi$
(D) 2
Answer:
Question 4. The minimum value of both $y = \sin x$ and $y = \cos x$ is____
(A) 0
(B) 1
(C) -1
(D) $-\infty$
Answer:
Question 5. The graph of $y = \tan x$ has vertical asymptotes where $\cos x$ is____
(A) 0
(B) 1
(C) -1
(D) undefined
Answer:
Question 6. The graph of $y = \cot x$ has vertical asymptotes where $\sin x$ is____
(A) 0
(B) 1
(C) -1
(D) undefined
Answer:
Question 7. In the graph of $y = A \sin(Bx)$, the period is given by____
(A) $|A|$
(B) $|B|$
(C) $2\pi/|B|$
(D) $\pi/|B|$
Answer:
Question 8. In the graph of $y = A \cos(Bx)$, the amplitude is given by____
(A) $|A|$
(B) $|B|$
(C) $2\pi/|B|$
(D) $\pi/|B|$
Answer:
Question 9. The graph of $y = \sin x$ is symmetric about the____
(A) x-axis
(B) y-axis
(C) origin
(D) line $y=1$
Answer:
Question 10. The graph of $y = \cos x$ is symmetric about the____
(A) x-axis
(B) y-axis
(C) origin
(D) line $x=1$
Answer:
Trigonometric Identities: Compound and Multiple Angles
Question 1. The formula for $\sin(A+B)$ is____
(A) $\sin A \cos B + \cos A \sin B$
(B) $\sin A \cos B - \cos A \sin B$
(C) $\cos A \cos B + \sin A \sin B$
(D) $\cos A \cos B - \sin A \sin B$
Answer:
Question 2. The formula for $\cos(A-B)$ is____
(A) $\cos A \cos B + \sin A \sin B$
(B) $\cos A \cos B - \sin A \sin B$
(C) $\sin A \cos B + \cos A \sin B$
(D) $\sin A \cos B - \cos A \sin B$
Answer:
Question 3. The formula for $\tan(A+B)$ is____
(A) $\frac{\tan A + \tan B}{1 + \tan A \tan B}$
(B) $\frac{\tan A - \tan B}{1 - \tan A \tan B}$
(C) $\frac{\tan A + \tan B}{1 - \tan A \tan B}$
(D) $\frac{\tan A - \tan B}{1 + \tan A \tan B}$
Answer:
Question 4. $\sin 2A$ is equal to____
(A) $\sin^2 A - \cos^2 A$
(B) $2 \sin A \cos A$
(C) $2 \sin A$
(D) $2 \cos A$
Answer:
Question 5. $\cos 2A$ is equal to $2\cos^2 A -$____
(A) $\cos^2 A$
(B) $\sin^2 A$
(C) 1
(D) 0
Answer:
Question 6. $\cos 2A$ is equal to $1 - 2$____$^{2}$A
(A) $\sin$
(B) $\cos$
(C) $\tan$
(D) $\cot$
Answer:
Question 7. $\tan 2A$ is equal to $\frac{2\tan A}{1 - ____}$
(A) $\tan A$
(B) $\tan^2 A$
(C) $2 \tan A$
(D) $2 \tan^2 A$
Answer:
Question 8. $\sin 3A$ is equal to $3\sin A - 4$____$^{3}$A
(A) $\cos$
(B) $\sin$
(C) $\tan$
(D) $\cot$
Answer:
Question 9. $\cos 3A$ is equal to $4\cos^3 A - 3$____$^{3}$A
(A) $\sin$
(B) $\cos$
(C) $\tan$
(D) $\cot$
Answer:
Question 10. The identity $1 - \cos \theta$ is equal to $2$____$^{2} (\theta/2)$
(A) $\sin$
(B) $\cos$
(C) $\tan$
(D) $\cot$
Answer:
Trigonometric Transformations: Product-to-Sum and Sum-to-Product
Question 1. The formula for $2 \sin A \cos B$ is $\sin(A+B) +$____$
(A) $\sin(A-B)$
(B) $\cos(A-B)$
(C) $\sin(B-A)$
(D) $\cos(A+B)$
Answer:
Question 2. The formula for $2 \cos A \cos B$ is $\cos(A+B) +$____$
(A) $\sin(A-B)$
(B) $\cos(A-B)$
(C) $\sin(B-A)$
(D) $\cos(A+B)$
Answer:
Question 3. The formula for $2 \sin A \sin B$ is $\cos(A-B) -$____
(A) $\sin(A+B)$
(B) $\cos(A+B)$
(C) $\sin(A-B)$
(D) $\cos(B-A)$
Answer:
Question 4. The formula for $\sin C + \sin D$ is $2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{____}{2}\right)$
(A) $C+D$
(B) $C-D$
(C) $D-C$
(D) $C$
Answer:
Question 5. The formula for $\cos C + \cos D$ is $2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{____}{2}\right)$
(A) $C+D$
(B) $C-D$
(C) $D-C$
(D) $C$
Answer:
Question 6. The formula for $\sin C - \sin D$ is $2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{____}{2}\right)$
(A) $C+D$
(B) $C-D$
(C) $D-C$
(D) $C$
Answer:
Question 7. The formula for $\cos C - \cos D$ is $-2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{____}{2}\right)$
(A) $C+D$
(B) $C-D$
(C) $D-C$
(D) $C$
Answer:
Question 8. The expression $\frac{\sin x + \sin y}{\cos x + \cos y}$ simplifies to____
(A) $\tan \left(\frac{x+y}{2}\right)$
(B) $\cot \left(\frac{x+y}{2}\right)$
(C) $\tan(x+y)$
(D) $\cot(x+y)$
Answer:
Question 9. The expression $\frac{\sin x - \sin y}{\cos x + \cos y}$ simplifies to____
(A) $\tan \left(\frac{x-y}{2}\right)$
(B) $\cot \left(\frac{x-y}{2}\right)$
(C) $\tan(x-y)$
(D) $\cot(x-y)$
Answer:
Question 10. The value of $\sin 75^\circ + \sin 15^\circ$ is____
(A) $2 \sin 45^\circ \cos 30^\circ$
(B) $2 \cos 45^\circ \sin 30^\circ$
(C) $\sin 90^\circ$
(D) $\cos 60^\circ$
Answer:
Trigonometric Equations: Solving Methods
Question 1. The principal solution of a trigonometric equation is the solution that lies in the specific range defined for the____
(A) Entire domain of the function
(B) Principal value branch of the corresponding inverse trigonometric function
(C) Interval $[0, 2\pi)$
(D) First quadrant
Answer:
Question 2. The general solution of $\sin x = \sin \alpha$ is $x =$____
(A) $n\pi + \alpha, n \in \mathbb{Z}$
(B) $2n\pi + \alpha, n \in \mathbb{Z}$
(C) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$
(D) $2n\pi \pm \alpha, n \in \mathbb{Z}$
Answer:
Question 3. The general solution of $\cos x = \cos \alpha$ is $x =$____
(A) $n\pi + \alpha, n \in \mathbb{Z}$
(B) $2n\pi + \alpha, n \in \mathbb{Z}$
(C) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$
(D) $2n\pi \pm \alpha, n \in \mathbb{Z}$
Answer:
Question 4. The general solution of $\tan x = \tan \alpha$ is $x =$____
(A) $n\pi + \alpha, n \in \mathbb{Z}$
(B) $2n\pi + \alpha, n \in \mathbb{Z}$
(C) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$
(D) $2n\pi \pm \alpha, n \in \mathbb{Z}$
Answer:
Question 5. The general solution of $\sin x = 0$ is $x =$____
(A) $n\pi, n \in \mathbb{Z}$
(B) $2n\pi, n \in \mathbb{Z}$
(C) $(2n+1)\pi/2, n \in \mathbb{Z}$
(D) $n\pi/2, n \in \mathbb{Z}$
Answer:
Question 6. The general solution of $\cos x = 0$ is $x =$____
(A) $n\pi, n \in \mathbb{Z}$
(B) $2n\pi, n \in \mathbb{Z}$
(C) $(2n+1)\pi/2, n \in \mathbb{Z}$
(D) $n\pi/2, n \in \mathbb{Z}$
Answer:
Question 7. The general solution of $\tan x = 0$ is $x =$____
(A) $n\pi, n \in \mathbb{Z}$
(B) $2n\pi, n \in \mathbb{Z}$
(C) $(2n+1)\pi/2, n \in \mathbb{Z}$
(D) $n\pi/2, n \in \mathbb{Z}$
Answer:
Question 8. The general solution of $\sin^2 x = \sin^2 \alpha$ is $x =$____
(A) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$
(B) $2n\pi \pm \alpha, n \in \mathbb{Z}$
(C) $n\pi \pm \alpha, n \in \mathbb{Z}$
(D) $n\pi + \alpha, n \in \mathbb{Z}$
Answer:
Question 9. To solve a trigonometric equation like $2\cos^2 x - \cos x - 1 = 0$, we can first treat it as a quadratic in____
(A) $x$
(B) $\sin x$
(C) $\cos x$
(D) $\tan x$
Answer:
Question 10. For $\sin x = k$, where $-1 \leq k \leq 1$, the principal value $\alpha = \sin^{-1} k$ lies in the interval____
(A) $[0, \pi]$
(B) $[-\pi/2, \pi/2]$
(C) $(0, \pi)$
(D) $(-\pi/2, \pi/2)$
Answer:
Inverse Trigonometric Functions: Introduction and Properties
Question 1. The function $\sin^{-1} x$ is the inverse of the sine function with a restricted domain of____
(A) $[-1, 1]$
(B) $\mathbb{R}$
(C) $[-\pi/2, \pi/2]$
(D) $[0, \pi]$
Answer:
Question 2. The domain of $\cos^{-1} x$ is____
(A) $[0, \pi]$
(B) $[-1, 1]$
(C) $\mathbb{R}$
(D) $[-\pi/2, \pi/2]$
Answer:
Question 3. The principal value branch (range) of $\sin^{-1} x$ is____
(A) $[0, \pi]$
(B) $[-\pi/2, \pi/2]$
(C) $(-\pi/2, \pi/2)$
(D) $(0, \pi)$
Answer:
Question 4. The principal value branch (range) of $\cos^{-1} x$ is____
(A) $[0, \pi]$
(B) $[-\pi/2, \pi/2]$
(C) $(-\pi/2, \pi/2)$
(D) $(0, \pi)$
Answer:
Question 5. The principal value branch (range) of $\tan^{-1} x$ is____
(A) $[0, \pi]$
(B) $[-\pi/2, \pi/2]$
(C) $(-\pi/2, \pi/2)$
(D) $(0, \pi)$
Answer:
Question 6. For $x \in [-1, 1]$, $\sin^{-1} x + \cos^{-1} x$ is equal to____
(A) 0
(B) $\pi/4$
(C) $\pi/2$
(D) $\pi$
Answer:
Question 7. For $x \in \mathbb{R}$, $\tan^{-1} x + \cot^{-1} x$ is equal to____
(A) 0
(B) $\pi/4$
(C) $\pi/2$
(D) $\pi$
Answer:
Question 8. For $|x| \geq 1$, $\sec^{-1} x + \text{cosec}^{-1} x$ is equal to____
(A) 0
(B) $\pi/4$
(C) $\pi/2$
(D) $\pi$
Answer:
Question 9. For $x \in [-1, 1]$, $\sin^{-1} (-x)$ is equal to____
(A) $\sin^{-1} x$
(B) $-\sin^{-1} x$
(C) $\pi - \sin^{-1} x$
(D) $\pi + \sin^{-1} x$
Answer:
Question 10. For $x \in [-1, 1]$, $\cos^{-1} (-x)$ is equal to____
(A) $\cos^{-1} x$
(B) $-\cos^{-1} x$
(C) $\pi - \cos^{-1} x$
(D) $\pi + \cos^{-1} x$
Answer:
Applications of Trigonometry: Heights and Distances
Question 1. The angle of elevation is formed between the horizontal line and the line of sight when the observer is looking____
(A) Downwards to an object
(B) Upwards to an object
(C) Parallel to the ground
(D) Perpendicular to the ground
Answer:
Question 2. The angle of depression is formed between the horizontal line and the line of sight when the observer is looking____
(A) Downwards to an object
(B) Upwards to an object
(C) Parallel to the ground
(D) Perpendicular to the ground
Answer:
Question 3. The angle of elevation from point A to point B is equal to the angle of depression from point B to point A because they are____
(A) Corresponding angles
(B) Alternate interior angles
(C) Vertically opposite angles
(D) Adjacent angles
Answer:
Question 4. If the angle of elevation of the top of a tower from a point 50m away from its base is $30^\circ$, the height of the tower is given by $50 \times$____
(A) $\sin 30^\circ$
(B) $\cos 30^\circ$
(C) $\tan 30^\circ$
(D) $\cot 30^\circ$
Answer:
Question 5. If a kite string is 100m long and makes an angle of $45^\circ$ with the ground, the height of the kite is given by $100 \times$____
(A) $\sin 45^\circ$
(B) $\cos 45^\circ$
(C) $\tan 45^\circ$
(D) $\cot 45^\circ$
Answer:
Question 6. If a ladder is 10m long and makes an angle of $60^\circ$ with the ground, the distance of the foot of the ladder from the wall is given by $10 \times$____
(A) $\sin 60^\circ$
(B) $\cos 60^\circ$
(C) $\tan 60^\circ$
(D) $\sec 60^\circ$
Answer:
Question 7. Which of the following trigonometric ratios is NOT typically used in basic heights and distances problems involving a single right triangle?
(A) Sine
(B) Cosine
(C) Tangent
(D) Cosecant
Answer:
Question 8. If two points of observation are on opposite sides of a tower, the distance between the points is the sum of their distances from the____
(A) Top of the tower
(B) Base of the tower
(C) Midpoint of the tower
(D) Observer's eye level
Answer:
Question 9. Heights and distances problems primarily utilize the properties of____
(A) Oblique triangles
(B) Isosceles triangles
(C) Right-angled triangles
(D) Scalene triangles
Answer:
Question 10. The line connecting the observer's eye to the object being viewed is called the____
(A) Horizontal line
(B) Vertical line
(C) Line of sight
(D) Base line
Answer: