Menu Top
MCQ Questions - Topic-wise
Topic 1: Numbers & Numerical Applications Topic 2: Algebra Topic 3: Quantitative Aptitude
Topic 4: Geometry Topic 5: Construction Topic 6: Coordinate Geometry
Topic 7: Mensuration Topic 8: Trigonometry Topic 9: Sets, Relations & Functions
Topic 10: Calculus Topic 11: Mathematical Reasoning Topic 12: Vectors & Three-Dimensional Geometry
Topic 13: Linear Programming Topic 14: Index Numbers & Time-Based Data Topic 15: Financial Mathematics
Topic 16: Statistics & Probability


Completing Statements MCQs for Sub-Topics of Topic 8: Trigonometry
Content On This Page
Introduction to Trigonometry and Basic Ratios (Right Triangle Trigonometry) Trigonometric Ratios of Special Angles and Complementary Angles Fundamental Trigonometric Identities
Angle Measurement: Degrees and Radians Trigonometric Functions of a Real Number (Unit Circle Approach) Graphs of Trigonometric Functions
Trigonometric Identities: Compound and Multiple Angles Trigonometric Transformations: Product-to-Sum and Sum-to-Product Trigonometric Equations: Solving Methods
Inverse Trigonometric Functions: Introduction and Properties Applications of Trigonometry: Heights and Distances


Completing Statements MCQs for Sub-Topics of Topic 8: Trigonometry



Introduction to Trigonometry and Basic Ratios (Right Triangle Trigonometry)

Question 1. In a right-angled triangle, the side opposite the right angle is always the____

(A) Opposite side

(B) Adjacent side

(C) Hypotenuse

(D) Base

Answer:

Question 2. In a right-angled triangle, the sum of the two acute angles is____

(A) $45^\circ$

(B) $90^\circ$

(C) $180^\circ$

(D) $360^\circ$

Answer:

Question 3. The ratio of the length of the side opposite an acute angle to the length of the hypotenuse in a right triangle defines the trigonometric ratio called____

(A) Cosine

(B) Sine

(C) Tangent

(D) Secant

Answer:

Question 4. For an acute angle $\theta$ in a right triangle, $\cos \theta$ is the ratio of the adjacent side to the____

(A) Opposite side

(B) Adjacent side

(C) Hypotenuse

(D) Perpendicular

Answer:

Question 5. If the length of the side opposite an acute angle in a right triangle is 'o' and the length of the adjacent side is 'a', then $\tan \theta$ is given by____

(A) $o/a$

(B) $a/o$

(C) $o/h$ (where h is hypotenuse)

(D) $a/h$ (where h is hypotenuse)

Answer:

Question 6. The reciprocal of $\sin \theta$ is defined as____

(A) $\cos \theta$

(B) $\sec \theta$

(C) $\text{cosec } \theta$

(D) $\cot \theta$

Answer:

Question 7. $\frac{1}{\cos \theta}$ is defined as the trigonometric ratio called____

(A) Sine

(B) Cosine

(C) Tangent

(D) Secant

Answer:

Question 8. The ratio of the length of the adjacent side to the length of the opposite side for an acute angle in a right triangle is the____

(A) Tangent

(B) Cotangent

(C) Secant

(D) Cosecant

Answer:

Question 9. For any angle $\theta$ where $\cos \theta \neq 0$, the expression $\frac{\sin \theta}{\cos \theta}$ is equal to____

(A) $\cot \theta$

(B) $\tan \theta$

(C) $\sec \theta$

(D) $\text{cosec } \theta$

Answer:

Question 10. In a right triangle with legs of lengths 'a' and 'b' and a hypotenuse of length 'c', the relationship $a^2 + b^2 = c^2$ is known as the____

(A) Law of Sines

(B) Law of Cosines

(C) Pythagorean Theorem

(D) Triangle Inequality

Answer:



Trigonometric Ratios of Special Angles and Complementary Angles

Question 1. The exact value of $\sin 30^\circ$ is____

(A) 0

(B) $\frac{1}{2}$

(C) $\frac{\sqrt{2}}{2}$

(D) $\frac{\sqrt{3}}{2}$

Answer:

Question 2. The value of $\tan 45^\circ$ is____

(A) 0

(B) $\frac{1}{\sqrt{3}}$

(C) 1

(D) $\sqrt{3}$

Answer:

Question 3. $\cos 60^\circ$ is equal to____

(A) $\sin 30^\circ$

(B) $\cos 30^\circ$

(C) $\sin 60^\circ$

(D) $\tan 30^\circ$

Answer:

Question 4. The sum $\sin 45^\circ + \cos 45^\circ$ is equal to____

(A) 1

(B) $\sqrt{2}$

(C) 2

(D) $\frac{1}{\sqrt{2}}$

Answer:

Question 5. For any angle $\theta$, $\cos (90^\circ - \theta)$ is equivalent to____

(A) $\sin \theta$

(B) $\cos \theta$

(C) $\tan \theta$

(D) $\cot \theta$

Answer:

Question 6. If A and B are acute angles such that $\sin A = \cos B$, then $A+B$ is equal to____

(A) $45^\circ$

(B) $60^\circ$

(C) $90^\circ$

(D) $180^\circ$

Answer:

Question 7. The exact value of $\tan 0^\circ$ is equal to____

(A) 0

(B) 1

(C) undefined

(D) $\sqrt{3}$

Answer:

Question 8. The value of $\cos 90^\circ$ is____

(A) 0

(B) 1

(C) -1

(D) undefined

Answer:

Question 9. The value of $\tan 90^\circ$ is____

(A) 0

(B) 1

(C) -1

(D) undefined

Answer:

Question 10. Using complementary angle properties, $\frac{\sin 50^\circ}{\cos 40^\circ}$ simplifies to____

(A) 0

(B) 1

(C) $\tan 50^\circ$

(D) $\cot 40^\circ$

Answer:



Fundamental Trigonometric Identities

Question 1. The identity $\sin^2 \theta + \cos^2 \theta = 1$ is a fundamental____

(A) Reciprocal identity

(B) Quotient identity

(C) Pythagorean identity

(D) Sum identity

Answer:

Question 2. For values of $\theta$ where $\tan \theta$ is defined, the expression $\sec^2 \theta - 1$ is equal to____

(A) $\sin^2 \theta$

(B) $\cos^2 \theta$

(C) $\tan^2 \theta$

(D) $\cot^2 \theta$

Answer:

Question 3. For values of A where $\cot A$ is defined, the expression $1 + \cot^2 A$ is equivalent to____

(A) $\sin^2 A$

(B) $\cos^2 A$

(C) $\sec^2 A$

(D) $\text{cosec}^2 A$

Answer:

Question 4. The quotient identity for $\cot \theta$ states that $\cot \theta =$____

(A) $\frac{\sin \theta}{\cos \theta}$

(B) $\frac{\cos \theta}{\sin \theta}$

(C) $\frac{1}{\tan \theta}$

(D) $\frac{1}{\sin \theta}$

Answer:

Question 5. The reciprocal identity $\text{cosec } \theta = \frac{1}{\sin \theta}$ is true for all $\theta$ where____

(A) $\sin \theta = 0$

(B) $\sin \theta \neq 0$

(C) $\cos \theta = 0$

(D) $\cos \theta \neq 0$

Answer:

Question 6. The expression $\sec^2 A (1 - \sin^2 A)$ simplifies to____

(A) $\tan^2 A$

(B) $\cot^2 A$

(C) 1

(D) $\sec^2 A$

Answer:

Question 7. The expression $\sin \theta \cdot \cot \theta$ simplifies to____

(A) $\sin \theta$

(B) $\cos \theta$

(C) $\tan \theta$

(D) $\sec \theta$

Answer:

Question 8. The expression $(\sin \theta + \cos \theta)^2 - 1$ simplifies to____

(A) 0

(B) 1

(C) $2 \sin \theta \cos \theta$

(D) $\sin^2 \theta - \cos^2 \theta$

Answer:

Question 9. For values of $\theta$ where $\sec \theta$ and $\tan \theta$ are defined, the expression $(\sec \theta - \tan \theta)(\sec \theta + \tan \theta)$ simplifies to____

(A) $\sec^2 \theta + \tan^2 \theta$

(B) 1

(C) 0

(D) $\sec^2 \theta - \tan^2 \theta$

Answer:

Question 10. The expression $\frac{\tan \theta}{\sec \theta}$ simplifies to____

(A) $\sin \theta$

(B) $\cos \theta$

(C) $\tan \theta$

(D) $\cot \theta$

Answer:



Angle Measurement: Degrees and Radians

Question 1. One degree is divided into 60 units called____

(A) Radians

(B) Seconds

(C) Minutes

(D) Grads

Answer:

Question 2. The degree measure of a straight angle is____

(A) $90^\circ$

(B) $180^\circ$

(C) $270^\circ$

(D) $360^\circ$

Answer:

Question 3. A radian is the angle subtended at the center of a circle by an arc equal in length to the____

(A) Diameter

(B) Radius

(C) Circumference

(D) Chord

Answer:

Question 4. To convert an angle measured in radians to degrees, you should multiply the radian measure by____

(A) $\pi/180$

(B) $180/\pi$

(C) $\pi/360$

(D) $360/\pi$

Answer:

Question 5. To convert an angle measured in degrees to radians, you should multiply the degree measure by____

(A) $\pi/180$

(B) $180/\pi$

(C) $\pi/360$

(D) $360/\pi$

Answer:

Question 6. $150^\circ$ is equivalent to how many radians?

(A) $\frac{5\pi}{6}$ radians

(B) $\frac{7\pi}{6}$ radians

(C) $\frac{2\pi}{3}$ radians

(D) $\frac{3\pi}{4}$ radians

Answer:

Question 7. $\frac{2\pi}{3}$ radians is equivalent to how many degrees?

(A) $120^\circ$

(B) $150^\circ$

(C) $210^\circ$

(D) $240^\circ$

Answer:

Question 8. The length of an arc $l$ in a circle with radius $r$ and central angle $\theta$ (in radians) is given by $l=$____

(A) $r + \theta$

(B) $r \theta$

(C) $r / \theta$

(D) $\theta / r$

Answer:

Question 9. The area of a sector of a circle with radius $r$ and central angle $\theta$ (in radians) is given by Area =____

(A) $r \theta^2$

(B) $\frac{1}{2} r \theta$

(C) $\frac{1}{2} r^2 \theta$

(D) $r^2 \theta$

Answer:

Question 10. A complete angle ($360^\circ$) is equivalent to____

(A) $\pi$ radians

(B) $2\pi$ radians

(C) $\pi/2$ radians

(D) $4\pi$ radians

Answer:



Trigonometric Functions of a Real Number (Unit Circle Approach)

Question 1. In the unit circle, for an angle $\theta$ in standard position whose terminal side intersects the circle at point $(x, y)$, $\cos \theta$ is the____

(A) x-coordinate

(B) y-coordinate

(C) ratio $y/x$

(D) distance from origin

Answer:

Question 2. In the unit circle, for an angle $\theta$ in standard position whose terminal side intersects the circle at point $(x, y)$, $\sin \theta$ is the____

(A) x-coordinate

(B) y-coordinate

(C) ratio $x/y$

(D) angle measure

Answer:

Question 3. The domain of the function $y = \sin x$ is____

(A) $[-1, 1]$

(B) $[0, 2\pi]$

(C) All real numbers ($\mathbb{R}$)

(D) Integers ($\mathbb{Z}$)

Answer:

Question 4. The range of the function $y = \cos x$ is____

(A) $[-1, 1]$

(B) $[0, 1]$

(C) $(-\infty, \infty)$

(D) $(-\infty, -1] \cup [1, \infty)$

Answer:

Question 5. In Quadrant I of the coordinate plane, all trigonometric functions are____

(A) Positive

(B) Negative

(C) Zero

(D) Undefined

Answer:

Question 6. In Quadrant II, the sine function is positive, and the cosine function is____

(A) Positive

(B) Negative

(C) Zero

(D) Positive or Negative depending on the angle

Answer:

Question 7. In Quadrant III, the tangent function is positive, and the sine function is____

(A) Positive

(B) Negative

(C) Zero

(D) Positive or Negative depending on the angle

Answer:

Question 8. In Quadrant IV, the cosine function is positive, and the sine function is____

(A) Positive

(B) Negative

(C) Zero

(D) Positive or Negative depending on the angle

Answer:

Question 9. The principal period of both $\sin x$ and $\cos x$ is____

(A) $\pi$

(B) $2\pi$

(C) $\pi/2$

(D) $4\pi$

Answer:

Question 10. The principal period of both $\tan x$ and $\cot x$ is____

(A) $\pi$

(B) $2\pi$

(C) $\pi/2$

(D) $4\pi$

Answer:



Graphs of Trigonometric Functions

Question 1. The graph of $y = \sin x$ passes through the point____

(A) $(0, 1)$

(B) $(1, 0)$

(C) $(0, 0)$

(D) $(\pi/2, 1/2)$

Answer:

Question 2. The graph of $y = \cos x$ passes through the point____

(A) $(0, 0)$

(B) $(0, 1)$

(C) $(1, 0)$

(D) $(\pi, 0)$

Answer:

Question 3. The maximum value of both $y = \sin x$ and $y = \cos x$ is____

(A) 0

(B) 1

(C) $\pi$

(D) 2

Answer:

Question 4. The minimum value of both $y = \sin x$ and $y = \cos x$ is____

(A) 0

(B) 1

(C) -1

(D) $-\infty$

Answer:

Question 5. The graph of $y = \tan x$ has vertical asymptotes where $\cos x$ is____

(A) 0

(B) 1

(C) -1

(D) undefined

Answer:

Question 6. The graph of $y = \cot x$ has vertical asymptotes where $\sin x$ is____

(A) 0

(B) 1

(C) -1

(D) undefined

Answer:

Question 7. In the graph of $y = A \sin(Bx)$, the period is given by____

(A) $|A|$

(B) $|B|$

(C) $2\pi/|B|$

(D) $\pi/|B|$

Answer:

Question 8. In the graph of $y = A \cos(Bx)$, the amplitude is given by____

(A) $|A|$

(B) $|B|$

(C) $2\pi/|B|$

(D) $\pi/|B|$

Answer:

Question 9. The graph of $y = \sin x$ is symmetric about the____

(A) x-axis

(B) y-axis

(C) origin

(D) line $y=1$

Answer:

Question 10. The graph of $y = \cos x$ is symmetric about the____

(A) x-axis

(B) y-axis

(C) origin

(D) line $x=1$

Answer:



Trigonometric Identities: Compound and Multiple Angles

Question 1. The formula for $\sin(A+B)$ is____

(A) $\sin A \cos B + \cos A \sin B$

(B) $\sin A \cos B - \cos A \sin B$

(C) $\cos A \cos B + \sin A \sin B$

(D) $\cos A \cos B - \sin A \sin B$

Answer:

Question 2. The formula for $\cos(A-B)$ is____

(A) $\cos A \cos B + \sin A \sin B$

(B) $\cos A \cos B - \sin A \sin B$

(C) $\sin A \cos B + \cos A \sin B$

(D) $\sin A \cos B - \cos A \sin B$

Answer:

Question 3. The formula for $\tan(A+B)$ is____

(A) $\frac{\tan A + \tan B}{1 + \tan A \tan B}$

(B) $\frac{\tan A - \tan B}{1 - \tan A \tan B}$

(C) $\frac{\tan A + \tan B}{1 - \tan A \tan B}$

(D) $\frac{\tan A - \tan B}{1 + \tan A \tan B}$

Answer:

Question 4. $\sin 2A$ is equal to____

(A) $\sin^2 A - \cos^2 A$

(B) $2 \sin A \cos A$

(C) $2 \sin A$

(D) $2 \cos A$

Answer:

Question 5. $\cos 2A$ is equal to $2\cos^2 A -$____

(A) $\cos^2 A$

(B) $\sin^2 A$

(C) 1

(D) 0

Answer:

Question 6. $\cos 2A$ is equal to $1 - 2$____$^{2}$A

(A) $\sin$

(B) $\cos$

(C) $\tan$

(D) $\cot$

Answer:

Question 7. $\tan 2A$ is equal to $\frac{2\tan A}{1 - ____}$

(A) $\tan A$

(B) $\tan^2 A$

(C) $2 \tan A$

(D) $2 \tan^2 A$

Answer:

Question 8. $\sin 3A$ is equal to $3\sin A - 4$____$^{3}$A

(A) $\cos$

(B) $\sin$

(C) $\tan$

(D) $\cot$

Answer:

Question 9. $\cos 3A$ is equal to $4\cos^3 A - 3$____$^{3}$A

(A) $\sin$

(B) $\cos$

(C) $\tan$

(D) $\cot$

Answer:

Question 10. The identity $1 - \cos \theta$ is equal to $2$____$^{2} (\theta/2)$

(A) $\sin$

(B) $\cos$

(C) $\tan$

(D) $\cot$

Answer:



Trigonometric Transformations: Product-to-Sum and Sum-to-Product

Question 1. The formula for $2 \sin A \cos B$ is $\sin(A+B) +$____$

(A) $\sin(A-B)$

(B) $\cos(A-B)$

(C) $\sin(B-A)$

(D) $\cos(A+B)$

Answer:

Question 2. The formula for $2 \cos A \cos B$ is $\cos(A+B) +$____$

(A) $\sin(A-B)$

(B) $\cos(A-B)$

(C) $\sin(B-A)$

(D) $\cos(A+B)$

Answer:

Question 3. The formula for $2 \sin A \sin B$ is $\cos(A-B) -$____

(A) $\sin(A+B)$

(B) $\cos(A+B)$

(C) $\sin(A-B)$

(D) $\cos(B-A)$

Answer:

Question 4. The formula for $\sin C + \sin D$ is $2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{____}{2}\right)$

(A) $C+D$

(B) $C-D$

(C) $D-C$

(D) $C$

Answer:

Question 5. The formula for $\cos C + \cos D$ is $2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{____}{2}\right)$

(A) $C+D$

(B) $C-D$

(C) $D-C$

(D) $C$

Answer:

Question 6. The formula for $\sin C - \sin D$ is $2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{____}{2}\right)$

(A) $C+D$

(B) $C-D$

(C) $D-C$

(D) $C$

Answer:

Question 7. The formula for $\cos C - \cos D$ is $-2 \sin \left(\frac{C+D}{2}\right) \sin \left(\frac{____}{2}\right)$

(A) $C+D$

(B) $C-D$

(C) $D-C$

(D) $C$

Answer:

Question 8. The expression $\frac{\sin x + \sin y}{\cos x + \cos y}$ simplifies to____

(A) $\tan \left(\frac{x+y}{2}\right)$

(B) $\cot \left(\frac{x+y}{2}\right)$

(C) $\tan(x+y)$

(D) $\cot(x+y)$

Answer:

Question 9. The expression $\frac{\sin x - \sin y}{\cos x + \cos y}$ simplifies to____

(A) $\tan \left(\frac{x-y}{2}\right)$

(B) $\cot \left(\frac{x-y}{2}\right)$

(C) $\tan(x-y)$

(D) $\cot(x-y)$

Answer:

Question 10. The value of $\sin 75^\circ + \sin 15^\circ$ is____

(A) $2 \sin 45^\circ \cos 30^\circ$

(B) $2 \cos 45^\circ \sin 30^\circ$

(C) $\sin 90^\circ$

(D) $\cos 60^\circ$

Answer:



Trigonometric Equations: Solving Methods

Question 1. The principal solution of a trigonometric equation is the solution that lies in the specific range defined for the____

(A) Entire domain of the function

(B) Principal value branch of the corresponding inverse trigonometric function

(C) Interval $[0, 2\pi)$

(D) First quadrant

Answer:

Question 2. The general solution of $\sin x = \sin \alpha$ is $x =$____

(A) $n\pi + \alpha, n \in \mathbb{Z}$

(B) $2n\pi + \alpha, n \in \mathbb{Z}$

(C) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$

(D) $2n\pi \pm \alpha, n \in \mathbb{Z}$

Answer:

Question 3. The general solution of $\cos x = \cos \alpha$ is $x =$____

(A) $n\pi + \alpha, n \in \mathbb{Z}$

(B) $2n\pi + \alpha, n \in \mathbb{Z}$

(C) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$

(D) $2n\pi \pm \alpha, n \in \mathbb{Z}$

Answer:

Question 4. The general solution of $\tan x = \tan \alpha$ is $x =$____

(A) $n\pi + \alpha, n \in \mathbb{Z}$

(B) $2n\pi + \alpha, n \in \mathbb{Z}$

(C) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$

(D) $2n\pi \pm \alpha, n \in \mathbb{Z}$

Answer:

Question 5. The general solution of $\sin x = 0$ is $x =$____

(A) $n\pi, n \in \mathbb{Z}$

(B) $2n\pi, n \in \mathbb{Z}$

(C) $(2n+1)\pi/2, n \in \mathbb{Z}$

(D) $n\pi/2, n \in \mathbb{Z}$

Answer:

Question 6. The general solution of $\cos x = 0$ is $x =$____

(A) $n\pi, n \in \mathbb{Z}$

(B) $2n\pi, n \in \mathbb{Z}$

(C) $(2n+1)\pi/2, n \in \mathbb{Z}$

(D) $n\pi/2, n \in \mathbb{Z}$

Answer:

Question 7. The general solution of $\tan x = 0$ is $x =$____

(A) $n\pi, n \in \mathbb{Z}$

(B) $2n\pi, n \in \mathbb{Z}$

(C) $(2n+1)\pi/2, n \in \mathbb{Z}$

(D) $n\pi/2, n \in \mathbb{Z}$

Answer:

Question 8. The general solution of $\sin^2 x = \sin^2 \alpha$ is $x =$____

(A) $n\pi + (-1)^n \alpha, n \in \mathbb{Z}$

(B) $2n\pi \pm \alpha, n \in \mathbb{Z}$

(C) $n\pi \pm \alpha, n \in \mathbb{Z}$

(D) $n\pi + \alpha, n \in \mathbb{Z}$

Answer:

Question 9. To solve a trigonometric equation like $2\cos^2 x - \cos x - 1 = 0$, we can first treat it as a quadratic in____

(A) $x$

(B) $\sin x$

(C) $\cos x$

(D) $\tan x$

Answer:

Question 10. For $\sin x = k$, where $-1 \leq k \leq 1$, the principal value $\alpha = \sin^{-1} k$ lies in the interval____

(A) $[0, \pi]$

(B) $[-\pi/2, \pi/2]$

(C) $(0, \pi)$

(D) $(-\pi/2, \pi/2)$

Answer:



Inverse Trigonometric Functions: Introduction and Properties

Question 1. The function $\sin^{-1} x$ is the inverse of the sine function with a restricted domain of____

(A) $[-1, 1]$

(B) $\mathbb{R}$

(C) $[-\pi/2, \pi/2]$

(D) $[0, \pi]$

Answer:

Question 2. The domain of $\cos^{-1} x$ is____

(A) $[0, \pi]$

(B) $[-1, 1]$

(C) $\mathbb{R}$

(D) $[-\pi/2, \pi/2]$

Answer:

Question 3. The principal value branch (range) of $\sin^{-1} x$ is____

(A) $[0, \pi]$

(B) $[-\pi/2, \pi/2]$

(C) $(-\pi/2, \pi/2)$

(D) $(0, \pi)$

Answer:

Question 4. The principal value branch (range) of $\cos^{-1} x$ is____

(A) $[0, \pi]$

(B) $[-\pi/2, \pi/2]$

(C) $(-\pi/2, \pi/2)$

(D) $(0, \pi)$

Answer:

Question 5. The principal value branch (range) of $\tan^{-1} x$ is____

(A) $[0, \pi]$

(B) $[-\pi/2, \pi/2]$

(C) $(-\pi/2, \pi/2)$

(D) $(0, \pi)$

Answer:

Question 6. For $x \in [-1, 1]$, $\sin^{-1} x + \cos^{-1} x$ is equal to____

(A) 0

(B) $\pi/4$

(C) $\pi/2$

(D) $\pi$

Answer:

Question 7. For $x \in \mathbb{R}$, $\tan^{-1} x + \cot^{-1} x$ is equal to____

(A) 0

(B) $\pi/4$

(C) $\pi/2$

(D) $\pi$

Answer:

Question 8. For $|x| \geq 1$, $\sec^{-1} x + \text{cosec}^{-1} x$ is equal to____

(A) 0

(B) $\pi/4$

(C) $\pi/2$

(D) $\pi$

Answer:

Question 9. For $x \in [-1, 1]$, $\sin^{-1} (-x)$ is equal to____

(A) $\sin^{-1} x$

(B) $-\sin^{-1} x$

(C) $\pi - \sin^{-1} x$

(D) $\pi + \sin^{-1} x$

Answer:

Question 10. For $x \in [-1, 1]$, $\cos^{-1} (-x)$ is equal to____

(A) $\cos^{-1} x$

(B) $-\cos^{-1} x$

(C) $\pi - \cos^{-1} x$

(D) $\pi + \cos^{-1} x$

Answer:



Applications of Trigonometry: Heights and Distances

Question 1. The angle of elevation is formed between the horizontal line and the line of sight when the observer is looking____

(A) Downwards to an object

(B) Upwards to an object

(C) Parallel to the ground

(D) Perpendicular to the ground

Answer:

Question 2. The angle of depression is formed between the horizontal line and the line of sight when the observer is looking____

(A) Downwards to an object

(B) Upwards to an object

(C) Parallel to the ground

(D) Perpendicular to the ground

Answer:

Question 3. The angle of elevation from point A to point B is equal to the angle of depression from point B to point A because they are____

(A) Corresponding angles

(B) Alternate interior angles

(C) Vertically opposite angles

(D) Adjacent angles

Answer:

Question 4. If the angle of elevation of the top of a tower from a point 50m away from its base is $30^\circ$, the height of the tower is given by $50 \times$____

(A) $\sin 30^\circ$

(B) $\cos 30^\circ$

(C) $\tan 30^\circ$

(D) $\cot 30^\circ$

Answer:

Question 5. If a kite string is 100m long and makes an angle of $45^\circ$ with the ground, the height of the kite is given by $100 \times$____

(A) $\sin 45^\circ$

(B) $\cos 45^\circ$

(C) $\tan 45^\circ$

(D) $\cot 45^\circ$

Answer:

Question 6. If a ladder is 10m long and makes an angle of $60^\circ$ with the ground, the distance of the foot of the ladder from the wall is given by $10 \times$____

(A) $\sin 60^\circ$

(B) $\cos 60^\circ$

(C) $\tan 60^\circ$

(D) $\sec 60^\circ$

Answer:

Question 7. Which of the following trigonometric ratios is NOT typically used in basic heights and distances problems involving a single right triangle?

(A) Sine

(B) Cosine

(C) Tangent

(D) Cosecant

Answer:

Question 8. If two points of observation are on opposite sides of a tower, the distance between the points is the sum of their distances from the____

(A) Top of the tower

(B) Base of the tower

(C) Midpoint of the tower

(D) Observer's eye level

Answer:

Question 9. Heights and distances problems primarily utilize the properties of____

(A) Oblique triangles

(B) Isosceles triangles

(C) Right-angled triangles

(D) Scalene triangles

Answer:

Question 10. The line connecting the observer's eye to the object being viewed is called the____

(A) Horizontal line

(B) Vertical line

(C) Line of sight

(D) Base line

Answer: